Molecular anatomy of tunicate senescence: reversible function of mitochondrial and nuclear genes associated with budding cycles.
نویسندگان
چکیده
Zooids of the asexual strain of Polyandrocarpa misakiensis have a lifespan of 4-5 months; before dying, they produce many buds, enabling continuation of the strain. This study was designed to investigate the nature of gene inactivation and reactivation during this continuous process of senescence and budding. During senescence, the zooidal epidermis showed acid β-galactosidase activity, lost proliferating cell nuclear antigen immunoreactivity and became ultrastructurally worn, indicating that the epidermis is a major tissue affected by the ageing process. Semi-quantitative PCR analysis showed that the genes encoding mitochondrial respiratory chains (MRCs) engaged in decreased transcriptional activity in senescent adults compared with younger adults. The results of in situ hybridization showed that the epidermis dramatically attenuates MRC expression during ageing but restores gene activity when budding commences. During budding and ageing, the nuclear gene Eed (a polycomb group component) was activated and inactivated in a pattern similar to that observed in MRCs. In buds, RNA interference (RNAi) of Eed attenuated Eed transcripts but did not affect the gene expression of pre-activated MRCs. A tunicate humoral factor, TC14-3, could induce Eed, accompanying the reactivation of MRC in adult zooids. When RNAi of Eed and Eed induction were performed simultaneously, zooidal cells and tissues failed to engage in MRC reactivation, indicating the involvement of Eed in MRC activation. Results of this study provide evidence that the mitochondrial gene activities of Polyandrocarpa can be reversed during senescence and budding, suggesting that they are regulated by nuclear polycomb group genes.
منابع مشابه
Promoter hypermethylation of KLOTHO; an anti-senescence related gene in colorectal cancer patients of Kashmir valley
Hypermethylation of CpG islands located in the promoter regions of genes is a major event in the development of the majority of cancer types, due to the subsequent aberrant silencing of important tumor suppressor genes. KLOTHO; a novel gene associated primarily with suppressing senescence has been shown to contribute to tumorigenesis as a result of its impaired function. Recently the relevance ...
متن کاملMolecular genetic control of leaf lifespan in plants - A review
Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...
متن کاملEvaluation of Cardiac Mitochondrial Function by a Nuclear Imaging Technique using Technetium-99m-MIBI Uptake Kinetics
Mitochondria play an important role in energy production for the cell. The proper function of a myocardial cell largely depends on the functional capacity of the mitochondria. Therefore it is necessary to establish a novel and reliable method for a non-invasive assessment of mitochondrial function and metabolism in humans. Although originally designed for evaluating myocardial perfusion, 99mTc...
متن کاملComparison of Mitochondrial-Related Transcriptional Levels of mitochondrial transcription factor A, Nuclear respiratory factor 1 and cytochrome c oxidase subunit 1 Genes in Single Human Oocytes at Various Stages of the Oocyte Maturation
Background: The aim of the current study was to assess the mRNA levels of two mitochondria-related genes, including nuclear-encoded NRF1 (nuclear respiratory factor 1), mitochondrial transcription factor A (TFAM), and mitochondrial-encoded cytochrome c oxidase subunit 1 (MT-CO1) genes in various stages of the human oocyte maturation. Methods: Oocytes were obtained from nine infertile women wit...
متن کاملAssociation of mtDNA mutation with Autism in Iranian patients
The autism spectrum disorders (ASD) are amongst the most heritable complex disorders. Although there have been many efforts to locate the genes associated with ASD risk, many has been remained to be disclosed about the genetics of ASD. Scrutiny's have only disclosed a small number of de novo and inherited variants significantly associated with susceptibility to ASD. These only comprise a small ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 139 21 شماره
صفحات -
تاریخ انتشار 2012